OLYMPIC GAMES – CAN YOU MEASURE UP?

Grade Level or Special Area: Second Grade Physical Education/Math

Written by: Alice Sappington, Will Rogers Elementary, Hobbs, NM, Catherine Emery, Will Rogers Elementary, Hobbs, NM, and Rebekah Torres, Jefferson Elementary, Hobbs, NM

Length of Unit: 6 Lessons, 1 culminating activity (approximately 3 weeks)

I. ABSTRACT
In this unit, students will apply information about Ancient Greece learned in the classroom to physical education activities, which in turn utilize mathematics skills for comparison and analysis. This unit was developed for concurrent use with the Core Knowledge unit on Ancient Greece. This unit lends itself to cooperative teaching between the classroom teacher and the physical education specialist.

II. OVERVIEW
A. Concept Objectives
1. People understand and use number systems and number theory. (NM MATH #6)
2. People understand and use computation and estimation. (NM MATH #7)
3. People understand and use statistics. (NM MATH #10)
4. People develop ways to honor themselves and their gods.
5. People apply movement concepts and principles to the learning and development of motor skills. (NM PE 2)
6. People need responsible personal and social behavior in physical activity settings. (NM PE 5)
7. People understand that physical activity provides opportunities for enjoyment, challenge, and social interaction. (NM PE 7)

B. Content from the Core Knowledge Sequence
1. Olympic Games p. 48
2. The Discus Thrower p. 52
3. Create and interpret simple bar graphs p.56
4. Recognize fractions as part of a whole set or region and write the corresponding numerical symbol: ½ p. 57
5. Make linear measurements in feet and inches, and know the abbreviations ft. and in. p. 57
6. Solve two- and three-digit addition problems with and without regrouping p. 57

C. Skill Objectives
1. Students will describe and demonstrate the linear measurement process using feet and inches. (NM MATH #7)
2. Students will explain and demonstrate the timing measurement process. (NM MATH #7)
3. Students will explain the origins of the Olympic Games.
4. Students will learn and demonstrate the modified form for throwing the discus. (NM PE 2)
5. Students will learn and demonstrate the correct modified form for putting the shot. (NM PE 2)
6. Students will learn and demonstrate the correct modified form for throwing the javelin. (NM PE 2)
7. Students will learn and practice the scooter relay. (NM PE 2,5,7)
8. Students will learn and practice the Tote-and-Fetch relay. (NM PE 2,5,7)
9. Students will utilize the process of linear measurement working in small groups in a competitive situation. (NM MATH #7)
10. Students will demonstrate the modified form for throwing the discus in a competitive situation. (NM PE 2)
11. Students will demonstrate the correct modified form for putting the shot in a competitive situation. (NM PE 2)
12. Students will demonstrate the correct modified form for throwing the javelin in a competitive situation. (NM PE 2)
13. Students will utilize the process of time measurement working in small groups in a competitive situation. (NM MATH #7)
14. Students will compete in a scooter relay. (NM PE 2,5,7)
15. Students will compete in a Tote-and-Fetch relay. (NM PE 2,5,7)

III. BACKGROUND KNOWLEDGE
A. For Teachers

B. For Students
1. Knowledge of Ancient Greece from Second Grade Core Knowledge unit.
2. Understanding of basic math functions (addition, subtraction).
3. Understanding of the purpose of measurement.
4. Familiarity with modern Olympic Games.
5. Concept of team activities and individual activities.

IV. RESOURCES
A. Note: In view of safety precautions with this age group, a Frisbee will be the discus, a softball will serve as the shot, and a chopstick will be used for the javelin. You will need at least 8 of each implement.
B. 16 empty milk jugs to fill with water
C. 8 gym scooters

V. LESSONS
Lesson One: Introduction to Olympic Games & Measurement (1 day)
A. Daily Objectives
1. Concept Objective(s)
 a. People develop ways to honor themselves and their gods.
 b. People understand and use computation and estimation. (NM MATH #7)
 c. People understand and use statistics. (NM MATH #10)
2. Lesson Content
 a. Olympic Games p. 48
 b. Make linear measurements in feet and inches, and use abbreviations ft. and in. NM MATH #7
c. Make time measurements using stopwatches. (NM MATH #7)

3. Skill Objective(s)
 a. Students will describe and demonstrate the linear measurement process using feet and inches. (NM MATH #7)
 b. Students will explain and demonstrate the timing measurement process. (NM MATH #7)
 c. Students will explain the origins of the Olympic Games.

B. Materials
1. *What Your Second Grader Needs To Know* p. 114
2. Appendix A – Origin of Olympic Games
3. (8) Tape Measures (100 ft)
4. (8) Stop watches
5. (8) Clipboards
6. (8) Pencils
7. (32) Time and Measurement charts (Appendix B)
8. Assessment rubric (Appendix C)

C. Key Vocabulary
1. Olympic Games – international athletic competition generally held every four years in a selected city. Included are track and field events, swimming, team games, etc.
2. Relay – a race between two or more teams, each runner going in turn only part of the distance.
3. Linear measurement – measuring how far something travels in feet and inches.
4. Time measurement – measuring how long an event lasts.
5. Data – the measurements collected to record on the charts.

D. Procedures/Activities
1. Discuss origins of Olympic Games (where and why) See Appendix A.
2. Discuss activities seen during modern Olympic Games.
3. Discuss why there is the need for measurements in games.
4. Demonstrate while explaining the procedures for obtaining linear and timing measurements, as well as recording the data.
5. Students practice taking linear measurements with tape measures, using stop watches to obtain time measurements, and writing data on the clipboard charts See Appendix B.

E. Assessment/Evaluation
1. Teacher circulates among students while they are practicing obtaining measurements. Students explain and demonstrate how to make linear and time measurements. Use rubric. See Appendix C – teacher use only.
2. Students explain the origins of the Olympic Games. Use rubric. See Appendix C – teacher use only.

Lesson Two: Learning & Practicing Throwing Events – Discus, Shot, and Javelin (3 days)

A. Daily Objectives
1. Concept Objective(s)
 a. People apply movement concepts and principles to the learning and development of motor skills. (NM PE 2)
 b. People need responsible personal and social behavior in physical activity settings. (NM PE 5)
c. People understand and use computation and estimation. (NM MATH #7)

2. Lesson Content
 a. The Discus Thrower p. 52
 b. Make linear measurements in feet and inches, and use abbreviations ft. and in. p. 57
 c. Recognize fractions as parts of a whole set or region and write corresponding numerical symbol: ½ p. 56
 d. Demonstrate critical elements of fundamental and specialized skills (NM PE 2)
 e. Work cooperatively and productively with small groups (NM PE 5)

3. Skill Objective(s)
 a. Students will demonstrate and practice the process of linear measurement working in small groups. (NM MATH #7)
 b. Students will learn and demonstrate the modified form for throwing the discus. (NM PE 2)
 c. Students will learn and demonstrate the correct modified form for putting the shot. (NM PE 2)
 d. Students will learn and demonstrate the correct modified form for throwing the javelin. (NM PE 2)

B. Materials
1. (8) Frisbees – Day 1
2. (8) Softballs – Day 2
3. (8) Chopsticks – Day 3
4. (8) Clipboards – each day
5. (8) Data charts – Appendix B – each day
6. (8) Pencils – each day
7. (8) Tape measures – 100 ft. – each day
8. (8) Hula-hoops – Days 1 and 2
9. (8) Pieces of water hose – 6 ft. long – Day 3
10. Appendices D, E, and F – each day

C. Key Vocabulary
1. Discus – a flat disc (Frisbees) thrown side-armed from a circle (hula-hoop).
2. Shot – a ball (softball) put from a circle (hula-hoop).
3. Javelin – a spear (chopstick) thrown from behind a line (water hose).
4. Foul – when a competitor steps out of the circle or crosses the line before the thrown implement hits the ground.
5. Thrower – the person actually throwing the implement.
6. Judge – person who watches thrower to make sure there is no foul.
7. Recorder – person who writes the measurement on the chart (ft. and in.).
8. Distal measure marker – the spot where the implement first lands. Place the zero (0) of the tape measure there. This person also retrieves the implement and returns it to the throwing spot.
9. Proximal measure marker – where the tape measure crosses the front of the circle or the throwing line. Read the measurement to the nearest ½ inch.

D. Procedures/Activities (3 days)
1. Note: One may either choose to teach all three activities the first day and have the remainder of lesson days for practice, or teach and practice only one activity per day.
2. *Day 1: Assign students to small groups for practice purposes. Each group should have five people in it: thrower, judge, recorder, distal measurer, and
proximal measurer. Have clipboard, chart, pencil, tape measure and a Frisbee at each group’s station.

3. Review the job of each person in the small groups. Discuss how to rotate from job to job.

4. Show a picture of the sculpture *The Discus Thrower*. Discuss how he is holding the discus and ask if anyone knows how to throw the discus.

5. Demonstrate how to throw the discus from within the circle. Point out that it is rather difficult to control the discus at first. See Appendix D for drawings showing modified discus technique.

6. Instruct groups to report to assigned stations (areas) to practice individual throwing techniques as well as measuring techniques.

7. Circulate among the groups to assess skill progress and reteach as necessary.

8. *Day 2: Stay in groups from previous day. Repeat steps 3, 5 through 7 above with the exceptions of using softballs to teach how to put the shot and Appendix E - teacher reference for modified shot put technique.

9. *Day 3: Stay in groups from previous day. Repeat steps 3, 5 through 7 above with the exceptions of using chopsticks to teach how to throw the javelin, the hoses rather than the hula-hoops, and Appendix F - teacher reference for modified javelin technique.

E. *Evaluation/Assessment*

1. Teacher observation of individual and group participation and cooperation.

Lesson Three: Learning and Practicing Relays – Scooter & Tote-and-Fetch (2 days) These activities work best indoors.

A. **Daily Objectives**

1. Concept Objective(s)
 a. People understand and use computation and estimation. (NM MATH #7)
 b. People apply movement concepts and principles to the learning and development of motor skills. (NM PE 2)
 c. People need responsible personal and social behavior in physical activity settings. (NM PE 5)
 d. People understand that physical activity provides opportunities for enjoyment, challenge, and social interaction. (NM PE 7)

2. Lesson Content
 a. Make time measurements manipulating stopwatches. (NM MATH #7)
 b. Demonstrate critical elements of fundamental and specialized skills (NM PE 2)
 c. Work cooperatively and productively with small groups (NM PE 5)

3. Skill Objective(s)
 a. Students will demonstrate and practice the process of time measurement working in small groups. (NM MATH #7)
 b. Students will learn and practice scooter relay. (NM PE 2,5,7)
 c. Students will learn and practice Tote-and-Fetch relay. (NM PE 2,5,7)

B. **Materials**

1. (8) Gym scooters – Day 1
2. (16) Gallon milk jugs filled with water – Day 2
3. (8) Hula-hoops – both days
4. (8) Stopwatches – both days
5. (8) Clipboards – both days
6. (8) Data charts – Appendix B
7. (8) Pencils – both days

C. Key Vocabulary
1. N/A

D. Procedures/Activities
1. *Day 1 - Remain in groups from previous day. Have clipboard, chart, pencil, stopwatch and a gym scooter at each group’s station.
2. Review procedure for using a stopwatch.
3. Review meaning of relay.
4. Place the hula-hoops about 30 feet away from starting line.
5. Demonstrate lying prone (on belly) on the scooter and propelling oneself forward using the arms in a swimming motion. The scooter should support all the body weight.
6. Instruct the students that on the command “Go,” the first person in the group will propel him/herself to the hula-hoop 30 feet in front of the group, around the hoop, and back to the starting point.
7. Give the scooter to the next person in line who repeats step 6.
8. Continue in this fashion until all group members have experienced the scooter.
9. Repeat steps 6-8 with the exception of the first person starting the stopwatch before engaging the scooter, and the last person stopping the watch when his/her turn is completed. Time is invalid if designated people do not operate the stopwatch.
10. *Day 2 – Repeat steps 1-4 from previous day, replacing scooters with jugs of water.
11. Instruct the students how to perform the Tote-and-Fetch relay.
12. On the command “GO,” the first person in each group will carry (tote) two jugs of water to the hoop in front of the group, set them down, and return and tag the next runner in the group.
13. The second runner goes forward, picks up the jugs and brings them back (fetch) to the third runner who repeats the action of the first runner.
14. Continue in this fashion until all runners have had a turn.
15. Repeat steps 12-15 with the exception of the first person starting the stopwatch before picking up the jugs and the last person stopping the watch when his/her turn is completed. Time is invalid if designated people do not operate the stopwatch.

E. Evaluation/Assessment
1. Teacher observation of individual and group participation and cooperation.

Lesson Four: Head To the Field for Field Event Competition (3 days, 1 event each day) This lesson is basically a repeat of Lesson Two except the activities are a competition instead of practice. Measurements taken will be compiled for scoring purposes in a later lesson.

A. Daily Objectives
1. Concept Objective(s)
 a. People apply movement concepts and principles to the learning and development of motor skills. (NM PE 2)
 b. People need responsible personal and social behavior in physical activity settings. (NM PE 5)
 c. People understand and use computation and estimation. (NM MATH #7)

2. Lesson Content
 a. Make linear measurements in feet and inches, and use abbreviations ft. and in. p.57
b. Recognize fractions as parts of a whole set or region and write corresponding numerical symbol: \(\frac{1}{2} \) p. 56

c. Demonstrate critical elements of fundamental and specialized skills (NM PE 2)

d. Work cooperatively and productively with small groups (NM PE 5)

3. Skill Objective(s)
 a. Students will utilize the process of linear measurement working in small groups in a competitive situation. (NM MATH #7)
 b. Students will demonstrate the modified form for throwing the discus in a competitive situation. (NM PE 2)
 c. Students will demonstrate the correct modified form for putting the shot in a competitive situation. (NM PE 2)
 d. Students will demonstrate the correct modified form for throwing the javelin in a competitive situation. (NM PE 2)

B. Materials
 1. Same materials as those listed in Lesson 2, plus Appendix G.

C. Key Vocabulary
 1. Review vocabulary from Lesson 2.

D. Procedures/Activities
 1. Note: For competition purposes divide class into six teams of five people each.
 2. *Day 1: Have clipboards, charts, pencils, tape measure, and a Frisbee at each team’s station.
 3. Review the job of each person in the small groups. Discuss how to rotate from job to job.
 4. Instruct groups to report to assigned stations (areas) to compete in the discus throw.
 5. Each person on the team throws the discus, gets a measurement, and rotates to a new job.
 6. After completing the rotation three times, write the best measurement in the column labeled Best Trial.
 7. Turn data charts in to teacher.
 8. *Day 2: Repeat steps 2-7 with the exception of using the softballs for the shot put competition.
 9. *Day 3: Repeat steps 2-7 with the exception of using the chopsticks for the javelin competition, and the hoses instead of the hula-hoops.

E. Evaluation/Assessment
 1. Teacher observation of individual and group participation and cooperation. See Appendix G – teacher use only.

Lesson Five: Relays! Relays! (2 days, indoors, 1 event each day) This lesson is basically a repeat of Lesson Three except the activities are a competition instead of practice. Measurements taken will be compiled for scoring purposes in a later lesson.

A. Daily Objectives
 1. Concept Objective(s)
 a. People understand and use computation and estimation. (NM MATH #7)
 b. People apply movement concepts and principles to the learning and development of motor skills. (NM PE 2)
 c. People need responsible personal and social behavior in physical activity settings. (NM PE 5)
 d. People understand that physical activity provides opportunities for enjoyment, challenge, and social interaction. (NM PE 7)
2. Lesson Content
 a. Make time measurements manipulating stopwatches. (NM MATH #7)
 b. Demonstrate critical elements of fundamental and specialized skills (NM PE 2)
 c. Work cooperatively and productively with small groups (NM PE 5)
3. Skill Objective(s)
 a. Students will utilize the process of time measurement working in small groups in a competitive situation. (NM MATH #7)
 b. Students will compete in a scooter relay. (NM PE 2, 5, 7)
 c. Students will compete in a Tote-and-Fetch relay. (NM PE 2, 5, 7)

B. Materials
 1. Same materials as those listed in Lesson 3, plus Appendix G.

C. Key Vocabulary
 1. N/A

D. Procedures/Activities
 1. *Day 1: Have clipboards, charts, pencils, stopwatch and a gym scooter at each team’s station.
 2. Review the job of each person in the small groups. Discuss how to rotate from job to job.
 3. Review the correct form for using the scooters.
 4. Instruct the students that on the command “Go,” the first person in the group will start the stopwatch, get on the scooter, and propel him/herself to the hula-hoop 30 feet in front of the group, around the hoop, and back to the starting point.
 5. Give the scooter to the next person in line who rides the scooter.
 6. Continue in this fashion until all group members have taken their turn. There will be three trials with the fastest time written in the column labeled “Best Trial”.
 7. The last person stops the watch when his/her turn is completed. Time is invalid if designated people do not operate the stopwatch.
 8. Turn in data sheets to teacher.
 10. Do Tote-and Fetch relay instead of scooter relay. Refer to Lesson 3 as needed.

E. Evaluation/Assessment
 1. Teacher observation of individual and group participation and cooperation. See Appendix G – teacher use only.

Lesson Six: How Did We Measure Up? (1-2 days)

A. Daily Objectives
 1. Concept Objective(s)
 a. People understand and use number systems and number theory. (NM MATH #6)
 b. People understand and use computation and estimation. (NM MATH #7)
 c. People understand and use statistics. (NM MATH #10)
 2. Lesson Content
 a. Recognize fractions as part of a whole set or region and write the corresponding numerical symbol: ½ p. 57
 b. Solve two- and three-digit addition problems with & without regrouping
 c. Create and interpret simple bar graphs p.56
 3. Skill Objective(s)
 a. The students will compute the measurements totals for their teams for each competition. (NM MATH #7)
b. The students will assign team points based on the team totals for each competition. (NM MATH #6)
c. The students will construct simple bar graphs showing team points. (NM MATH #10)
d. The students will compare and analyze the data from the graphs. (NM MATH #10)

B. Materials
1. Paper for computations
2. Pencils
3. Calculators
4. Graph paper
5. Colored pencils
6. Rulers
7. Point chart (Appendix H)
8. Evaluation Rubric (Appendix J)

C. Key Vocabulary
1. X-Axis – The horizontal axis on a graph.
3. Label – Tell what each axis represents.

D. Procedures/Activities
1. Have the students get in team groups.
2. Hand out the measurement sheets from each competition.
3. Using the calculators, have the teams compute their totals for each competition.
 Note: Inform students that \(\frac{1}{2} = .5 \) on the calculator.
4. Students then assign points to teams according to point chart (Appendix H).
5. Create bar graphs with colored pencils and paper to illustrate compiled data and compare results.

E. Evaluation/Assessment
1. Teacher evaluation based on rubric (Appendix J).

VI. Culminating Activity (1 day)
A. Take students to computer lab with data sheets and hand-made graphs. Have them enter data on an Excel spreadsheet and then create a computer generated bar graph. Compare hand-made bar graphs with computer-made bar graphs. Display both on bulletin boards.

HANDOUTS/WORKSHEETS
1. Appendix A – Origin of Olympic Games
2. Appendix B – Time and Measurement Chart
3. Appendix C – Assess and Evaluate Rubric
4. Appendix D – Discus Technique
5. Appendix E – Shot Put Technique
6. Appendix F – Javelin Technique
7. Appendix G – Evaluation Rubric G
8. Appendix H – Scoring Chart

VII. Bibliography

The Olympic Games began as an ancient Greek festival consisting of contests in athletics, poetry, and music. They were held every four years at Olympia to honor the Greek god Zeus. The winners of each contest were honored with a crown of laurel leaves.
Olympic Games: Can You Measure Up?

Appendix B

Time & Measurement Data Chart
Lessons 1-5

Circle One: Practice Competition

Circle One: Discus Shot Put Javelin

Scooter Relay Tote-and-Fetch Relay

<table>
<thead>
<tr>
<th>Name/Team</th>
<th>1st Trial</th>
<th>2nd Trial</th>
<th>3rd Trial</th>
<th>Best Trial</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Olympic Games: Can You Measure Up?

Appendix C

<table>
<thead>
<tr>
<th>Linear Meas. - Explain</th>
<th>Time Meas.</th>
<th>Olympic Origins</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 points ea.</td>
<td>2 points ea.</td>
<td>2 points ea.</td>
<td>16 points possible</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Fair or Foul</th>
<th>Place Mark</th>
<th>Begin Meas.</th>
<th>End Meas.</th>
<th>Begin Clock</th>
<th>End Clock</th>
<th>Why</th>
<th>Where</th>
<th>possible</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Olympic Games: Can You Measure Up?

Appendix D
Discus Form Diagram
Lesson 2
Olympic Games: Can You Measure Up?

Appendix E
Shot Put Technique
Lesson 2
Olympic Games: Can You Measure Up?

Appendix F

Javelin Form Diagram

Lesson 2
Olympic Games: Can You Measure Up?

Appendix G

<table>
<thead>
<tr>
<th>Score</th>
<th>Group Part/Coop</th>
<th>Group Form</th>
<th>Individual Part/Coop</th>
<th>Individual Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Always on task</td>
<td>Always attempts to complete task using correct form</td>
<td>Always on task</td>
<td>Always attempts to complete task using correct form</td>
</tr>
<tr>
<td>3</td>
<td>On task 80% of time</td>
<td>Attempts to use correct form 80% of time</td>
<td>On task 80% of time</td>
<td>Attempts to use correct form 80% of time</td>
</tr>
<tr>
<td>2</td>
<td>On task 60% of time</td>
<td>Attempts to use correct form 60% of time</td>
<td>On task 60% of time</td>
<td>Attempts to use correct form 60% of time</td>
</tr>
<tr>
<td>1</td>
<td>On task less than 50% of time</td>
<td>Attempts to use correct form less than 50% of time</td>
<td>On task less than 50% of time</td>
<td>Attempts to use correct form less than 50% of time</td>
</tr>
</tbody>
</table>
Lesson 6

Event: Discus and Javelin

<table>
<thead>
<tr>
<th>Team Measurement Total</th>
<th>Points Awarded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Over 250 ft.</td>
<td>50</td>
</tr>
<tr>
<td>225 – 249 ft.</td>
<td>40</td>
</tr>
<tr>
<td>200 – 224 ft.</td>
<td>30</td>
</tr>
<tr>
<td>175 – 199 ft.</td>
<td>20</td>
</tr>
<tr>
<td>Under 175 ft.</td>
<td>10</td>
</tr>
</tbody>
</table>

Event: Shot Put

<table>
<thead>
<tr>
<th>Team Measurement Total</th>
<th>Points Awarded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Over 150 ft.</td>
<td>50</td>
</tr>
<tr>
<td>125 – 149 ft.</td>
<td>40</td>
</tr>
<tr>
<td>100 – 124 ft.</td>
<td>30</td>
</tr>
<tr>
<td>75 – 99 ft.</td>
<td>20</td>
</tr>
<tr>
<td>Under 75 ft.</td>
<td>10</td>
</tr>
</tbody>
</table>

Event: Scooter Relay

<table>
<thead>
<tr>
<th>Team Measurement Total</th>
<th>Points Awarded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under 6 minutes</td>
<td>50</td>
</tr>
<tr>
<td>6.1 to 7.0 minutes</td>
<td>40</td>
</tr>
<tr>
<td>7.1 to 8.0 minutes</td>
<td>30</td>
</tr>
<tr>
<td>8.1 to 9.0 minutes</td>
<td>20</td>
</tr>
<tr>
<td>Over 9 minutes</td>
<td>10</td>
</tr>
</tbody>
</table>

Event: Tote-and-Fetch Relay

<table>
<thead>
<tr>
<th>Team Measurement Total</th>
<th>Points Awarded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under 3 minutes</td>
<td>50</td>
</tr>
<tr>
<td>3.1 to 4.0 minutes</td>
<td>40</td>
</tr>
<tr>
<td>4.1 to 5.0 minutes</td>
<td>30</td>
</tr>
<tr>
<td>5.1 to 6.0 minutes</td>
<td>20</td>
</tr>
<tr>
<td>Over 6 minutes</td>
<td>10</td>
</tr>
</tbody>
</table>
Olympic Games: Can You Measure Up?

Appendix J

<table>
<thead>
<tr>
<th>Data</th>
<th>Form</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>All data complete and 100% accurate; can justify data</td>
<td>Graph contains labeled x axis, labeled y axis, title, colored bars</td>
<td>4</td>
</tr>
<tr>
<td>All data complete and 80% accurate; can justify data</td>
<td>Graph contains 3 of 4 needed items</td>
<td>3</td>
</tr>
<tr>
<td>All data complete and 60% accurate; can justify data</td>
<td>Graph contains 2 of 4 needed items</td>
<td>2</td>
</tr>
<tr>
<td>Data less than 50% complete; cannot justify data</td>
<td>Graph contains only 1 needed item</td>
<td>1</td>
</tr>
</tbody>
</table>